1st Edition
by Neal Fishman (Author), Cole Stryker (Author), Grady Booch (Foreword)
Organizations can make data science a repeatable, predictable tool, which business professionals use to get more value from their data
Enterprise data and AI projects are often scattershot, underbaked, siloed, and not adaptable to predictable business changes. As a result, the vast majority fail. These expensive quagmires can be avoided, and this book explains precisely how.
Data science is emerging as a hands-on tool for not just data scientists, but business professionals as well. Managers, directors, IT leaders, and analysts must expand their use of data science capabilities for the organization to stay competitive. Smarter Data Science helps them achieve their enterprise-grade data projects and AI goals. It serves as a guide to building a robust and comprehensive information architecture program that enables sustainable and scalable AI deployments.
When an organization manages its data effectively, its data science program becomes a fully scalable function that’s both prescriptive and repeatable. With an understanding of data science principles, practitioners are also empowered to lead their organizations in establishing and deploying viable AI. They employ the tools of machine learning, deep learning, and AI to extract greater value from data for the benefit of the enterprise.
By following a ladder framework that promotes prescriptive capabilities, organizations can make data science accessible to a range of team members, democratizing data science throughout the organization. Companies that collect, organize, and analyze data can move forward to additional data science achievements:
When
they climb the ladder presented in this book, businesspeople and data
scientists alike will be able to improve and foster repeatable
capabilities. They will have the knowledge to maximize their AI and data
assets for the benefit of their organizations.
Year | 2020 |
---|---|
Pages | 290 |
Language | English |
Format | |
Size | 4 MB |
ISBN-10 | 1119693411 |
ISBN-13 | 978-1119693413 |
ASIN | B086Q6DJQ4 |